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X-ray Attenuation Coefficients from
10 kev to 100 Mev

Rosemary T. McGinnies

A revision is given of the X-ray attenuation coefficients presented in National Burcan

of Standards Circular 583.

f g Table 4 of that publication is eliminated, and n new table ix
given for each material for photon energies less than 100 kev.

The uncertainties in the

estimates of attenuation coeflicients at low energies are from 3 to 5 percent, which is the

same as was previously given at higher energies,

The cross sections for seattering are

unchanged. Two values are listed for the photoeleetric eross seetion, one ealeulated from
the Sauter-Stobbe formulas and the other derived from new experimental evidence, The
procedures for smoothing experimental data are deseribed and are generally the same as
were used in Circular 583. In addition to the svstematic coverage of the region from 10 kev
to 100 Mev, some datn are included for » number of elements based on experimental measnre-

ments below 10 kev and above 100 Mev.

A comparison is made between ealenlated and

experimental total attenuation coefficients at energies whove 10 Mev,

1. Introduction

The estimates of X-ray attenuation coefficients
presented in National Bureau of Standards
Circular 583 [1] were based on a combination
of theoretical calculations and available experi-
mental evidence, with judicious interpolations
between them. Inaccuracies in the values below
50 kev were thought to approach 10 percent,
especially for light elements, but probably not to
exceed 3 to 5 percent above 100 kev. Experi-
mental data obtained in the past few years enable
us to revise the estimates at low energies so that
they are of the same accuracy as the others.
The main tables in this revision are intended to
replace the low-energy portions of the tables in
Circular 583. The footnotes to these tables are
omitted even though they still apply. The
columns giving the cross sections for coherent
and incoherent scattering are unchanged. The
same general procedures are used here as in the
original publication for the energy region from
10 kev to 100 Mev. In addition, we include some
data for a number of elements based on experi-
mental measurements helow 10 kev and some
information up to 1 Bev. No attempt is made to
break down these total attenuation coefficients
into contributions from individual absorption
and scattering processes.

No revision is required at this time for the
intermediate energy region from 100 kev to 20
Mev. There are no new measurements of total
attenuation coefficients at these energies. The
estimates just below 1 Mev have been substan-
tiated 1o within an experimental error of 2 per-
cent in recent direct measurements of the photo-
electric cross sections of Cu, Mo, Ag, Ta, and
Au for Cs"¥ radiation [2]. A direct measurement
of the photoclectric cross section for Ph at 0.511
Mev is also in reasonable agreement with the
estimates already given [3].

The empirical corrections to calculated photo-
electric cross sections at energies below 100 kev
for low-Z materials given in table 4 of Circular
583 were hased on a small number of experimental
data, all of which were obtained by obsolete
techniques. This low-energy region has now
been studied quite extensively below 30 or 40
kev by modern experimental methods [4, 5, 6, 7,
8]. It appears that calculations based on the
Sauter-Stobbe formula are in somewhat better
accord with experiment for low-Z materials and
for 10 to 40 kev photons than was previously
indicated. On the other hand, data at low
energies for the high-Z materials vequire con-
siderable revision of attenuation coefficients below
the K absorption edges. The reason for this is
that a hydrogen-like approximation, such as is
made in the Stobbe formulas, is not nearly so
good for I and M shells as for the K shell. In-
creases ranging from 17 to 38 percent are indicated
for Mo, Sn, and T and from 40 to over 100 percent
for the very-high-Z elements (Z274). The
estimates for elements Mo through U below the
K edges are the only ones for which the accuracy
of the estimates given in Circular 583 falls below
the stated amount.

Considerable new experimental data are also
now available above 20 Mev [0, 10, 11, 12].
There is a general trend in the region below 100
Mev for the experimental values of the total
attenuation coefficients in low-Z elements to be
several percent higher than estimated in Circular
583. We give here a brief account of recent
developments and indicate attempts that have
been made to understand the measurements. A
revision of the estimates of Circular 583 at higher
energies will be given in a future publication when,
it is hoped, the theoretical picture may be clarified.

2. Low Energies (hy < 40 kev)

Table 1 shows the range of recent good measure-
ments of X-ray attenuation coefficients at energies
below 40 kev [4, 5, 6, 7, 8]. The accuracy claimed
by each experimenter is listed in table 2. Most of
the data are due to Alan J. Bearden and R. D,

Deslattes who claim estimated uncertainties of
less than 1 percent [4, 5]. Each will give the
details of his work in a forthcoming paper in the
Physical Reriew; Bearden is currently extending
his measurements below 10 kev to other elements
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and somewhat lower energics.  French measured
mass-attenuation coefficients for Cu and Al down
to 13.2 kev; Hopkins extended these data to 7.5
kev and to the other elements listed in the table
[6]. The data of Roof for Th, U, and Pu are con-
sistent. with those available for W, Pt, and Au:
however most of his measurements for the light
clements at 17.48 kev (Mo K., radiation) depart
substantially from those of other experiments [7].
The experimantal coverage is far from complete
so that extensive interpolation with respect to
energy and atomic number is required for a svste-
matic tabulation of attenuation coefficients.  For
cach element listed in table 1, all the experimental
data were plotted on a large graph as functions of
energy. The eritical absorption edges were located
at the energies listed in table 1. A smooth curve
was drawn through the points bhetween edges.
Values read off this curve at 3, 4, 5, 6, 8, 10, 15, 20,
and 30 kev were converted to eross seetions per
atom by multiplving by A/N,, where N, is
Avogadro’s number and . is the atomic weight,
At cach energy the cross sections per atom should
be smooth functions of Z so that one ean interpo-
late for missing elements.  The two-way smoothing
versus energy and Z was done by successive
approximations for different groups of data. At
a particular energy, starting with the lightest
clements, those whose K edges lie at lower energies
form one group, those whose K edges lie at higher
energies and L edges at lower energies form
another, and so on. For example, at 3 kev elements
below Cl at Z=17 form one group and at 10 kev
elements below Z=130 (Zn) form another.

There have been no caleulations of the effect of
binding on scattering cross sections below 10 kev.
Therefore, in this region the total cross sections
per atom were smoothed graphically as funetions
of Z. The fitting was aided by log-log plots of the
attenuation cocfficients versus energy, which form
straight lines at 10 kev and below. The results
below 10 kev given in table 3 fit smoothly with
the higher energy values in the other tables,

More precise smoothing of the data was possi-
ble at 10, 15, 20, and 30 kev. The three groups
of interest which the elements form for these
energies are those with /7 £ 30, 40 £ 7/ £ 33,
and 7 = 74,  (Elements with Z between 53 and
74 are omitted.) The total seattering (coherent
plus incoherent) corrected for binding eflects,
which is given both here and in Cireular 583 in
the second column of the table for each element,
was subtracted from the experimental cross sece-

tion per atom to give an experimental photoelee-
trie eross section.  For Z £ 30, the relative devi-
ation of this quantity from the photoelectrie eross
section caleulated by the Sauter-Stobbe formulas
was smoothed as a function of Z by a least-squares
fit for a straight line.  The smoothed experimental
photoelectric cross sections are given in column 5
of tables 4 through 29 and are used to ealeulate

the totals in columns 6 and 7; for comparison,

the caleulated photoeleetrie eross sections are
listed in column 4. The new experimental data
for Zr (40) through Sn (50) were used to revise
the tables for Mo, Sn, and 1. At each energy
the logarithm of the experimental photoelectric
cross seetion is a good linear function of Z in this
region so that a straight-line fit by the method
of least squares was determined. These lines were
extrapolated to Z=53 to obtain new values for 1.
Due account was taken of the absorption edges
and log-log plots of the adjusted photoeffect cross
sections as functions of energy aided in complet-
ing the tables.  There is less than 2-percent differ-
ence between any experimental point and the
corresponding point obtained by the least-squares
fit. Below the K edges the new values for the
mass-attenuation coeflicients for these elements
are 20 to 40 percent higher than those caleulated
from the Stobbe formulas.  Perhaps this straight-
line extrapolation is not good. Incidentally, the
new values do agree well with those compiled by
Allen for Compton and Allison’s book [14].

The new estimates of the mass-attenuation co-
efficients for the heaviest elements (Z = 74)
depend upon the experimental data for W, P,
Au, Th, U, and Pu [4, 5, 7], which are not very
complete.  The L-absorption edges break up the
region so that smoothing versus 7 is possible
only at 10, 15, and 30 kev. This was dene graph-
ically by means of a semilog plot of the experi-
mental photoelectric cross section (in barns per
atom) as a function of Z. Values for T1 and Pb
interpolated from these curves were added to the
total scattering cross sections, and the totals were
plotted on log-log paper as functions of energy
for cach clement. These form straight lines be-
tween edges.  The results of this two-way smooth-
ing and interpolating are given in tables 22
through 26. The agreement with Allen’s values
is very good for Ph, good for W and Pt away from
the edges, fair for Pt, and poor for Th.  Although
the new estimates may be too high, they are based
on the only experimental values that are avail-
able.  The experimental procedure of reference [7)
will be discussed in reference [4].

3. Intermediate Energies (30 < hy < 100 kev)

The only new experimental datn at energies
above 30 kev are for Al, C'u, Sn, and Au at 40
Kev. These data together with the new values at
30 kev for all Z must be made consistent with the
older data of high aceuracy mentioned in Clireular
583. Over 20 years ago, Cuykendall {15] measured
fow-7Z materials at encrgies between 60 and 250
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kev with probable errors no greater than 2 percent,
and Jones [16] covered the high-Z range at ener-
gies from 67 to 447 kev with an average probable
error of 0.8 pereent.  There is nothing of com-
parable accuracy betweon 40 and 60 kev, A
comparizon between Cuykendall’s low-Z data and
predictions based on the Sauter-Stobbe formulas




shows that the experimental values are from |
to 10 percent higher than the ealenlated ones,
that this difference goes to zero at about 100 kev.,
and that for Cu the difference is zero at all these
energies,  Cuykendall's data from 60 to 90 kev
are larger relative to the ealeulated values than
the newer data are at about 35 kev.  However, the
uncertainty in the ealeulations is about the same
from about 35 to 100 kev, provided the entire
vegion is far above the K-absorption edges. There-
fore, the eurrent estimates for the attenuation

coefficients for elements with Z<Z30 are obtained
by smoothing between the predietions of the
Sauter-Stobbe formulas above 40 kev and the
recent experimental values below that energy.
Jones’ data for Mo and Sn above about 70 kev
agree with the estimates given in Circular 583,
There are no new experimental data for these
materials above 30 kev so that ealeulated values
are assumed above the K edges.  Jones' data for
Ph in the vieinity of the K edge agree with the
revised values given in table 25.

4. High Energies (hv > 10 Mev)

Attenuation coeflicients for a range of elements
at energies above 10 Mev are given in figure 1.
b 2 A .
['he solid curves are the totals estimated in
Circular 583, and the points are the experimental
data now available. The latter are quite con-
sistent and indicate elearly that for low-7 ma-
terials the values based on the theory assumed in
Circular 583 are too low by several percent.
This diserepancey was indicated in Cireular 583
but not considered to be serious because of the
limited experimental information available at that
time and the general difficulty of assigning a
definite eross section to each of the various proc-
esses that contributes to the total attenuation
coeflicient.

Present evidence confirms the ecarlier trend and
points to a substantial problem above 10 Mev,
Wolfl measured the total attenuation coeflicients
of (" and H,O at 20.3 and 20.8 Mev, which is in
the region of strong photonuelear absorption [12].
Wyckofl and Koch made very extensive and
accurate measurements for (!, Al, H,0, and H
from 13 to 82 Mev [12]. The other new data
below 100 Mev were obtained by MoffTatt, et al.,
at 94 Mev for a range of elements from H to U
{10]. Information about high-Z elements is still
not adequate. The measurements above the
photonuclear region (35 Mev) for (7, Al, and
H.0 are especially accurate with maximum uncer-
tainties of about 0.9 percent [10, 11].

It is unclear at this time what the best estimates
are for calculated values of the cross sections for
individual processes at high energies, particularly
for clectron pair production in the field of the
atomic eleetrons.  In the first report of this series
[28], calculations from the Borsellino results for
free electrons were used up to 50 Mev [29], with
an extrapolation to higher energies aided by the
results of Wheeler and Lamb [30}].

In Circular 583, calculations of the pair cross
section in the field of clectrons were made by using
the formulas of Votruba for the limiting cases of
photon energies near the threshold value and large
compared to me? [31]. A graphical interpolation
was made for the intermediate energy region.
This was accomplished by extrapolating the curves
for the limiting cases and using the ealeulations of
Borsellino [29] as a guide to the shape of the
curve in the imtermediate region, This general

procedure was recommended by Rohrlich.  Move
recently he and Joseph re-evaluated the exchange
correetion in the high energy limit showing that
the constant in eq 13, Circular 583, is exactly
100/9 instead of 11.3+0.5 [33]. In the case of
hydrogen, this correction raises the cross section
for pair production in the field of the electrons at
30, 40, 60, 80, and 100 Mev by 0.1 mb and at 50
Mev by 0.2 mb.  Negleeting the effeet of binding
on the atomic electrons, revised values of this
cross section for other elements are obtained by
multiplving that for hydrogen by Z. The same
result is obtained above 20 Mev by numerical
integration of the formulas of Wheeler and Lamb
[30] for hydrogen over the energy of the positron
and subtraction of the exchange correction of
Joseph and Rohrlich [33].

Recently Suh and Bethe, following the work of
Borsellino, have studied the theory of electron
pair production in the field of a particle of arbi-
trary mass [29, 35]. The recoil-momentum-dis-
tribution function for high-ncident photon ener-
gies which they obtained for the case of a recoil
clectron originally bound in an atom agrees with
that of Wheeler and Lamb [30). Measurements
of cleetron pair production in the nuelear field
and in the electron field in a hydrogen-filled cloud
chamber by Hart, Cocconi, et al., between 10 and
100 Mev are also in agreement with the Wheeler-
Lamb calculations [34]). Malamud compares the
results of accurate experiments above 40 Mev with
calculations of total attenuation cocfficients at
these energies [9]. He finds that measurements
in Be and C elearly agree with the Wheeler-Lamb
prediction and disagree with the Wheeler-Lamb
result reduced by the exchange correction of
Joseph and Rohrlich.  Measurements in H and
Li are inconclusive.

An experiment was designed in this laboratory
to decide whether the discrepancy between experi-
ment and current estimates should be assigned to
nuclear or clectronie effects [11]. The result of
this was that even though an upper limit was
taken for pair production in the clectron field, the
nuclear pair cross section was still too low by 2.25
percent. (for C and Al).  An exploration was made
to sce what the effeet would be of replacing
Thomas-Fermi form factors by Hartree form fac-
tors in the sereening ealeulation for nuclear pair

3
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I'hie solid curves are the totals given in NBS Clreolar 583,

@ Maulumud [9)

A Moflatt, Thresher, Weeks,

Wilson {10
O Wyckofl an
0 Wolff {12
@ Lawson

Koch [11}

17
QD Dewire, As‘lkm, Beach |18]

production and also replacing the high-energy
approximation made in Bethe and Heitler's
formula 114, reference [27], by the exact no screen-
ing expression, eq 110, reference [27]. A sample
calculation for C and Al at 60 Mev shows that
these two effects nearly cancel so that the net
result is to decrease the pair cross sections given
in Clircular 583 by 0.7 percent.

In view of these considerations, a revision of

Total attenuation voeflicients from 10 Mev to 1 Ber.

The points are experimental data from the following sources:

O Anderson, et al. 19, 20]

@ Cooper [12)

i@ Rosenbium {22]

81 Walker [23]

V¥ Colgate [24]

B Berman [25)

¥V Adams {26}
the attenuation coefficients at high energies seems
unwarranted at this time.

The author thanks the many scientists who
have sent her reports on their research and pre-
prints of their publications and the members of
this laboratory who have helped her by contrib-
uting generously of their time and information.
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. l:'rurm'_l/ claimed by experimenters at low energies
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Standard deviation S 10 pereent
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